Final project proposal due by 6pm on Thu Nov 16. Email Chris or the TFs to set up a meeting. Those who have completed this will see four proposal points on Canvas.

Today: eigenvalue algorithms, QR algorithm
Rayleigh Quotient

But also, if x is an approximate eigenvector, then $r(x)$ gives us a good approximation to the eigenvalue.

This is because estimation of an eigenvalue from an approximate eigenvector is an $n \times 1$ linear least squares problem: $x\lambda \approx Ax$

$x \in \mathbb{R}^n$ is our “tall thin matrix” and $Ax \in \mathbb{R}^n$ is our right-hand side.

Hence the normal equation for $x\lambda \approx Ax$ yields the Rayleigh quotient, i.e.

$$x^T x \lambda = x^T Ax$$
Rayleigh Quotient

Question: How accurate is the Rayleigh quotient approximation to an eigenvalue?

Let’s consider r as a function of x, so $r : \mathbb{R}^n \rightarrow \mathbb{R}$

\[
\frac{\partial r(x)}{\partial x_j} = \frac{\partial}{\partial x_j}(x^TAx) \cdot \frac{x^Tx}{x^Tx} - \frac{(x^TAx) \frac{\partial}{\partial x_j}(x^Tx)}{(x^Tx)^2}
\]

\[
= \frac{2(Ax)_j}{x^Tx} - \frac{(x^TAx)2x_j}{(x^Tx)^2}
\]

\[
= \frac{2}{x^Tx}(Ax - r(x)x)_j
\]

(Note that the second equation relies on the symmetry of A)
Rayleigh Quotient

Therefore

\[\nabla r(x) = \frac{2}{x^T x} (Ax - r(x)x) \]

For an eigenpair \((\lambda, v)\) we have \(r(v) = \lambda\) and hence

\[\nabla r(v) = \frac{2}{v^T v} (Av - \lambda v) = 0 \]

This shows that eigenvectors of \(A\) are stationary points of \(r\)
Rayleigh Quotient

Suppose \((\lambda, v)\) is an eigenpair of \(A\), and let us consider a Taylor expansion of \(r(x)\) about \(v\):

\[
\begin{align*}
 r(x) &= r(v) + \nabla r(v)^T (x - v) \\
 &\quad + \frac{1}{2} (x - v)^T H_r(v)(x - v) + \text{H.O.T.} \\
 &= r(v) + \frac{1}{2} (x - v)^T H_r(v)(x - v) + \text{H.O.T.}
\end{align*}
\]

Hence as \(x \to v\) the error in a Rayleigh quotient approximation is

\[
|r(x) - \lambda| = O(\|x - v\|^2)
\]

That is, the Rayleigh quotient approx. to an eigenvalue squares the error in a corresponding eigenvector approx.
Rayleigh Quotient Iteration

The Rayleigh quotient gives us an **eigenvalue estimate from an eigenvector estimate**

Inverse iteration gives us an **eigenvector estimate from an eigenvalue estimate**

It is natural to combine the two, this yields the **Rayleigh quotient iteration**

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>choose $x_0 \in \mathbb{R}^n$ arbitrarily</td>
</tr>
<tr>
<td>2</td>
<td>for $k = 1, 2, \ldots$ do</td>
</tr>
<tr>
<td>3</td>
<td>$\sigma_k = x_{k-1}^T A x_{k-1} / x_{k-1}^T x_{k-1}$</td>
</tr>
<tr>
<td>4</td>
<td>solve $(A - \sigma_k I)y_k = x_{k-1}$ for y_k</td>
</tr>
<tr>
<td>5</td>
<td>$x_k = y_k / |y_k|$</td>
</tr>
<tr>
<td>6</td>
<td>end for</td>
</tr>
</tbody>
</table>
Rayleigh Quotient Iteration

Suppose, at step k, we have $\|x_{k-1} - v\| \leq \epsilon$

Then, from the Rayleigh quotient in line 3 of the algorithm, we have $|\sigma_k - \lambda| = O(\epsilon^2)$

In lines 4 and 5 of the algorithm, we then perform an inverse iteration with shift σ_k to get x_k

Recall the eigenvector error in one inverse iteration step is scaled by ratio of “second largest to largest eigenvalues” of $(A - \sigma_k I)^{-1}$
Rayleigh Quotient Iteration

Let λ be the closest eigenvalue of A to σ_k, then the magnitude of largest eigenvalue of $(A - \sigma_k I)^{-1}$ is $1/|\sigma_k - \lambda|$.

The second largest eigenvalue magnitude is $1/|\sigma_k - \hat{\lambda}|$, where $\hat{\lambda}$ is the eigenvalue of A “second closest” to σ_k.

Hence at each inverse iteration step, the error is reduced by a factor

$$\frac{|\sigma_k - \lambda|}{|\sigma_k - \hat{\lambda}|} = \frac{|\sigma_k - \lambda|}{|(\sigma_k - \lambda) + (\lambda - \hat{\lambda})|} \rightarrow \text{const.} |\sigma_k - \lambda| \text{ as } \sigma_k \rightarrow \lambda$$

Therefore, we obtain cubic convergence as $k \rightarrow \infty$:

$$\|x_k - v\| \rightarrow (\text{const.} |\sigma_k - \lambda|)\|x_{k-1} - v\| = O(\epsilon^3)$$
A drawback of Rayleigh iteration: we can’t just LU factorize $A - \sigma_k I$ once since the shift changes each step.

Also, it’s harder to pick out specific parts of the spectrum with Rayleigh quotient iteration since σ_k can change unpredictably.

Python demo: Rayleigh iteration to compute an eigenpair of

$$A = \begin{bmatrix} 5 & 1 & 1 \\ 1 & 6 & 1 \\ 1 & 1 & 7 \end{bmatrix}$$
QR Algorithm
The QR Algorithm

The QR algorithm for computing eigenvalues is one of the best known algorithms in Numerical Analysis\(^1\)

It was developed independently in the late 1950s by John G.F. Francis (England) and Vera N. Kublanovskaya (USSR)

The QR algorithm efficiently provides approximations for all eigenvalues/eigenvectors of a matrix

We will consider what happens when we apply the power method to a set of vectors — this will then motivate the QR algorithm

\(^1\)Recall that here we focus on the case in which \(A \in \mathbb{R}^{n \times n}\) is symmetric
The QR Algorithm

Let \(x_1^{(0)}, \ldots, x_p^{(0)} \) denote \(p \) linearly independent starting vectors, and suppose we store these vectors in the columns of \(X_0 \).

We can apply the power method to these vectors to obtain the following algorithm:

1: choose an \(n \times p \) matrix \(X_0 \) arbitrarily
2: \textbf{for} \(k = 1, 2, \ldots \) \textbf{do}
3: \hspace{1em} \(X_k = AX_{k-1} \)
4: \textbf{end for}
The QR Algorithm

From our analysis of the power method, we see that for each \(i = 1, 2, \ldots, p \):

\[
\chi_i^{(k)} = \left(\lambda_n^k \alpha_i, n v_n + \lambda_{n-1}^k \alpha_i, n-1 v_{n-1} + \cdots + \lambda_1^k \alpha_i, 1 v_1 \right)
\]

\[
= \lambda_{n-p}^k \left(\sum_{j=n-p+1}^{n} \left(\frac{\lambda}{\lambda_{n-p}} \right)^k \alpha_{i,j} v_j \right) + \sum_{j=1}^{n-p} \left(\frac{\lambda_j}{\lambda_{n-p}} \right)^k \alpha_{i,j} v_j
\]

Then, if \(|\lambda_{n-p+1}| > |\lambda_{n-p}| \), the sum in green will decay compared to the sum in blue as \(k \to \infty \)

Hence the columns of \(X_k \) will converge to a basis for \(\text{span}\{v_{n-p+1}, \ldots, v_n\} \)
The QR Algorithm

However, this method doesn’t provide a good basis: each column of X_k will be very close to v_n

Therefore the columns of X_k become very close to being linearly dependent

We can resolve this issue by enforcing linear independence at each step
The QR Algorithm

We orthonormalize the vectors after each iteration via a (reduced) QR factorization, to obtain the simultaneous iteration:

1: choose \(n \times p \) matrix \(Q_0 \) with orthonormal columns
2: for \(k = 1, 2, \ldots \) do
3: \(X_k = A \hat{Q}_{k-1} \)
4: \(\hat{Q}_k \hat{R}_k = X_k \)
5: end for

The column spaces of \(\hat{Q}_k \) and \(X_k \) in line 4 are the same

Hence columns of \(\hat{Q}_k \) converge to orthonormal basis for \(\text{span}\{v_{n-p+1}, \ldots, v_n\} \)
The QR Algorithm

In fact, we don’t just get a basis for \(\text{span}\{v_{n-p+1}, \ldots, v_n\} \), we get the eigenvectors themselves!

Theorem: The columns of \(\hat{Q}_k \) converge to the \(p \) dominant eigenvectors of \(A \)

We will not discuss the full proof, but we note that this result is not surprising since:

- the eigenvectors of a symmetric matrix are orthogonal
- columns of \(\hat{Q}_k \) converge to an orthogonal basis for \(\text{span}\{v_{n-p+1}, \ldots, v_n\} \)

Simultaneous iteration approximates eigenvectors, we obtain eigenvalues from the Rayleigh quotient \(\hat{Q}^T A \hat{Q} \approx \text{diag}(\lambda_1, \ldots, \lambda_n) \)
The QR Algorithm

With \(p = n \), the simultaneous iteration will approximate all eigenpairs of \(A \).

We now show a more convenient reorganization of the simultaneous iteration algorithm.

We shall require some extra notation: the \(Q \) and \(R \) matrices arising in the simultaneous iteration will be underlined \(\underline{Q}_k \), \(\underline{R}_k \).

(As we will see shortly, this is to distinguish between the matrices arising in the two different formulations...)
The QR Algorithm

Define the k^{th} Rayleigh quotient matrix: $A_k \equiv Q_k^T A Q_k$, and the QR factors Q_k, R_k as: $Q_k R_k = A_{k-1}$

Our goal is to show that $A_k = R_k Q_k$, $k = 1, 2, \ldots$

Initialize $Q_0 = I \in \mathbb{R}^{n \times n}$, then in the first simultaneous iteration we obtain $X_1 = A$ and $Q_1 R_1 = A$

It follows that $A_1 = Q_1^T A Q_1 = Q_1^T (Q_1 R_1) Q_1 = R_1 Q_1$

Also $Q_1 R_1 = A_0 = Q_0^T A Q_0 = A$, so that $Q_1 = Q_1$, $R_1 = R_1$, and $A_1 = R_1 Q_1$

2We now we use the full, rather than the reduced, QR factorization hence we omit $^\wedge$ notation
The QR Algorithm

In the second simultaneous iteration, we have $X_2 = AQ_1$, and we compute the QR factorization $Q_2 R_2 = X_2$

Also, using our QR factorization of A_1 gives

$$X_2 = AQ_1 = (Q_1 Q_1^T) A Q_1 = Q_1 A_1 = Q_1 (Q_2 R_2),$$

which implies that $Q_2 = Q_1 Q_2 = Q_1 Q_2$ and $R_2 = R_2$

Hence

$$A_2 = Q_2^T A Q_2 = Q_2^T Q_1^T A Q_1 Q_2 = Q_2^T A_1 Q_2 = Q_2^T Q_2 R_2 Q_2 = R_2 Q_2$$
The QR Algorithm

The same pattern continues for \(k = 3, 4, \ldots \): we QR factorize \(A_k \) to get \(Q_k \) and \(R_k \), then we compute \(A_{k+1} = R_k Q_k \).

The columns of the matrix \(\underline{Q}_k = Q_1 Q_2 \cdots Q_k \) approximates the eigenvectors of \(A \).

The diagonal entries of the Rayleigh quotient matrix \(A_k = \underline{Q}_k^T A \underline{Q}_k \) approximate the eigenvalues of \(A \).

(Also, due to eigenvector orthogonality for symmetric \(A \), \(A_k \) converges to a diagonal matrix as \(k \to \infty \))
This discussion motivates the famous **QR algorithm**:

1. $A_0 = A$
2. **for** $k = 1, 2, \ldots$ **do**
3. $Q_k R_k = A_{k-1}$
4. $A_k = R_k Q_k$
5. **end for**
The QR Algorithm

Python demo: Compute eigenvalues and eigenvectors of

\[
A = \begin{pmatrix}
2.9766 & 0.3945 & 0.4198 & 1.1159 \\
0.3945 & 2.7328 & -0.3097 & 0.1129 \\
0.4198 & -0.3097 & 2.5675 & 0.6079 \\
1.1159 & 0.1129 & 0.6079 & 1.7231
\end{pmatrix}
\]

(This matrix has eigenvalues 1, 2, 3 and 4)

\(^3\)Heath example 4.15
The QR Algorithm

We have presented the simplest version of the QR algorithm: the “unshifted” QR algorithm.

In order to obtain an “industrial strength” algorithm, there are a number of other issues that need to be considered:

- convergence can be accelerated significantly by introducing shifts, as we did in inverse iteration and Rayleigh iteration
- it is more efficient to reduce A to tridiagonal form (via Householder reflectors) before applying QR algorithm
- reliable convergence criteria for the eigenvalues/eigenvectors are required

High-quality implementations, e.g. LAPACK or Python/MATLAB eig, handle all of these subtleties for us.