Last time: Conditions for optimality
Today: Newton’s method for optimization, survey of optimization methods
We first consider the simpler case of *unconstrained optimization* (as opposed to constrained optimization).

Perhaps the simplest method for unconstrained optimization is *steepest descent*.

Key idea: The negative gradient $-\nabla f(x)$ points in the “steepest downhill” direction for f at x.

Hence an iterative method for minimizing f is obtained by following $-\nabla f(x_k)$ at each step.

Question: How far should we go in the direction of $-\nabla f(x_k)$?
We can try to find the best step size via a subsidiary (and easier!) optimization problem.

For a direction $s \in \mathbb{R}^n$, let $\phi : \mathbb{R} \to \mathbb{R}$ be given by

$$\phi(\eta) = f(x + \eta s)$$

Then minimizing f along s corresponds to minimizing the one-dimensional function ϕ.

This process of minimizing f along a line is called a line search.\(^1\)

\(^1\)The line search can itself be performed via Newton’s method, as described for $f : \mathbb{R}^n \to \mathbb{R}$ shortly, or via a built-in function.
Steepest Descent

Putting these pieces together leads to the **steepest descent** method:

1: choose initial guess x_0
2: for $k = 0, 1, 2, \ldots$ do
3: $s_k = -\nabla f(x_k)$
4: choose η_k to minimize $f(x_k + \eta_k s_k)$
5: $x_{k+1} = x_k + \eta_k s_k$
6: end for

However, steepest descent often converges very slowly

Convergence rate is linear, and scaling factor can be arbitrarily close to 1

(Steepest descent will be covered on Assignment 5)
Newton’s Method

We can get faster convergence by using more information about f

Note that $\nabla f(x^*) = 0$ is a system of nonlinear equations, hence we can solve it with quadratic convergence via Newton’s method2

The Jacobian matrix of $\nabla f(x)$ is $H_f(x)$ and hence Newton’s method for unconstrained optimization is:

1: choose initial guess x_0
2: for $k = 0, 1, 2, \ldots$ do
3: solve $H_f(x_k)s_k = -\nabla f(x_k)$
4: $x_{k+1} = x_k + s_k$
5: end for

2Note that in its simplest form this algorithm searches for stationary points, not necessarily minima
Newton’s Method

We can also interpret Newton’s method as seeking stationary point based on a sequence of local quadratic approximations

Recall that for small δ

$$f(x + \delta) \approx f(x) + \nabla f(x)^T \delta + \frac{1}{2} \delta^T H_f(x) \delta \equiv q(\delta)$$

where $q(\delta)$ is quadratic in δ (for a fixed x)

We find stationary point of q in the usual way:3

$$\nabla q(\delta) = \nabla f(x) + H_f(x) \delta = 0$$

This leads to $H_f(x) \delta = -\nabla f(x)$, as in the previous slide

3Recall I.4 for differentiation of $\delta^T H_f(x) \delta$
Newton’s Method

Python example: Newton’s method for minimization of Himmelblau’s function

\[
f(x, y) = (x^2 + y - 11)^2 + (x + y^2 - 7)^2
\]

Local maximum of 181.617 at \((-0.270845, -0.923039)\)

Four local minima, each of 0, at

\((3, 2), (-2.805, 3.131), (-3.779, -3.283), (3.584, -1.841)\)
Newton’s Method

Python example: Newton’s method for minimization of Himmelblau’s function
Newton’s Method: Robustness

Newton’s method generally converges much faster than steepest descent.

However, Newton’s method can be unreliable far away from a solution.

To improve robustness during early iterations it is common to perform a line search in the Newton-step-direction.

Also line search can ensure we don’t approach a local max. as can happen with raw Newton method.

The line search modifies the Newton step size, hence often referred to as a damped Newton method.
Another way to improve robustness is with trust region methods.

At each iteration k, a “trust radius” R_k is computed.

This determines a region surrounding x_k on which we “trust” our quadratic approx.

We require $\|x_{k+1} - x_k\| \leq R_k$, hence constrained optimization problem (with quadratic objective function) at each step.
Newton’s Method: Robustness

Size of R_{k+1} is based on comparing actual change, $f(x_{k+1}) - f(x_k)$, to change predicted by the quadratic model.

If quadratic model is accurate, we expand the trust radius, otherwise we contract it.

When close to a minimum, R_k should be large enough to allow full Newton steps \implies eventual quadratic convergence.
Quasi-Newton Methods

Newton’s method is effective for optimization, but it can be unreliable, expensive, and complicated

- **Unreliable**: Only converges when sufficiently close to a minimum
- **Expensive**: The Hessian H_f is dense in general, hence very expensive if n is large
- **Complicated**: Can be impractical or laborious to derive the Hessian

Hence there has been much interest in so-called quasi-Newton methods, which do not require the Hessian
Quasi-Newton Methods

General form of quasi-Newton methods:

\[x_{k+1} = x_k - \alpha_k B_k^{-1} \nabla f(x_k) \]

where \(\alpha_k \) is a line search parameter and \(B_k \) is some approximation to the Hessian

Quasi-Newton methods generally lose quadratic convergence of Newton’s method, but often superlinear convergence is achieved

We now consider some specific quasi-Newton methods
The Broyden–Fletcher–Goldfarb–Shanno (BFGS) method is one of the most popular quasi-Newton methods:

1: choose initial guess \(x_0 \)
2: choose \(B_0 \), initial Hessian guess, e.g. \(B_0 = I \)
3: \textbf{for} \(k = 0, 1, 2, \ldots \) \textbf{do}
4: \hspace{1em} solve \(B_k s_k = -\nabla f(x_k) \)
5: \hspace{1em} \(x_{k+1} = x_k + s_k \)
6: \hspace{1em} \(y_k = \nabla f(x_{k+1}) - \nabla f(x_k) \)
7: \hspace{1em} \(B_{k+1} = B_k + \Delta B_k \)
8: \textbf{end for}

where

\[
\Delta B_k \equiv \frac{y_k y_k^T}{y_k^T s_k} - \frac{B_k s_k s_k^T B_k}{s_k^T B_k s_k}
\]
See lecture: derivation of the Broyden root-finding algorithm

See lecture: derivation of the BFGS algorithm

Basic idea is that B_k accumulates second derivative information on successive iterations, eventually approximates H_f well
BFGS

Actual implementation of BFGS: store and update inverse Hessian to avoid solving linear system:

1: choose initial guess x_0
2: choose H_0, initial inverse Hessian guess, e.g. $H_0 = I$
3: **for** $k = 0, 1, 2, \ldots$ **do**
4: calculate $s_k = -H_k \nabla f(x_k)$
5: $x_{k+1} = x_k + s_k$
6: $y_k = \nabla f(x_{k+1}) - \nabla f(x_k)$
7: $H_{k+1} = \Delta H_k$
8: **end for**

where

$$\Delta H_k \equiv (I - s_k \rho_k y_k^T)H_k(I - \rho_k y_k s_k^T) + \rho_k s_k s_k^T,$$

$$\rho_k = \frac{1}{y_k^T s_k}$$
BFGS is implemented as the `fmin_bfgs` function in `scipy.optimize`

Also, BFGS (+ trust region) is implemented in Matlab’s `fminunc` function, e.g.

```matlab
x0 = [5;5];
options = optimset('GradObj','on');
[x,fval,exitflag,output] = ...
    fminunc(@himmelblau_function,x0,options);
```
The conjugate gradient (CG) method is another alternative to Newton’s method that does not require the Hessian:

1: choose initial guess x_0
2: $g_0 = \nabla f(x_0)$
3: $x_0 = -g_0$
4: for $k = 0, 1, 2, \ldots$ do
5: choose η_k to minimize $f(x_k + \eta_k s_k)$
6: $x_{k+1} = x_k + \eta_k s_k$
7: $g_{k+1} = \nabla f(x_{k+1})$
8: $\beta_{k+1} = (g_{k+1}^T g_{k+1})/(g_k^T g_k)$
9: $s_{k+1} = -g_{k+1} + \beta_{k+1} s_k$
10: end for
Constrained Optimization
Equality Constrained Optimization

We now consider equality constrained minimization:

$$\min_{x \in \mathbb{R}^n} f(x) \text{ subject to } g(x) = 0,$$

where $f : \mathbb{R}^n \to \mathbb{R}$ and $g : \mathbb{R}^n \to \mathbb{R}^m$

With the Lagrangian $\mathcal{L}(x, \lambda) = f(x) + \lambda^T g(x)$, we recall from that necessary condition for optimality is

$$\nabla \mathcal{L}(x, \lambda) = \begin{bmatrix} \nabla f(x) + J_g^T(x) \lambda \\ g(x) \end{bmatrix} = 0$$

Once again, this is a nonlinear system of equations that can be solved via Newton’s method
Sequential Quadratic Programming

To derive the Jacobian of this system, we write

\[\nabla L(x, \lambda) = \left[\nabla f(x) + \sum_{k=1}^{m} \lambda_k \nabla g_k(x) \right] \in \mathbb{R}^{n+m} \]

Then we need to differentiate wrt to \(x \in \mathbb{R}^n \) and \(\lambda \in \mathbb{R}^m \)

For \(i = 1, \ldots, n \), we have

\[(\nabla L(x, \lambda))_i = \frac{\partial f(x)}{\partial x_i} + \sum_{k=1}^{m} \lambda_k \frac{\partial g_k(x)}{\partial x_i} \]

Differentiating wrt \(x_j \), for \(i, j = 1, \ldots, n \), gives

\[\frac{\partial}{\partial x_j} (\nabla L(x, \lambda))_i = \frac{\partial^2 f(x)}{\partial x_i \partial x_j} + \sum_{k=1}^{m} \lambda_k \frac{\partial^2 g_k(x)}{\partial x_i \partial x_j} \]
Hence the top-left $n \times n$ block of the Jacobian of $\nabla \mathcal{L}(x, \lambda)$ is

$$B(x, \lambda) \equiv H_f(x) + \sum_{k=1}^{m} \lambda_k H_{g_k}(x) \in \mathbb{R}^{n \times n}$$

Differentiating $(\nabla \mathcal{L}(x, \lambda))_i$ wrt λ_j, for $i = 1, \ldots, n$, $j = 1, \ldots, m$, gives

$$\frac{\partial}{\partial \lambda_j} (\nabla \mathcal{L}(x, \lambda))_i = \frac{\partial g_j(x)}{\partial x_i}$$

Hence the top-right $n \times m$ block of the Jacobian of $\nabla \mathcal{L}(x, \lambda)$ is

$$J_{g}(x)^T \in \mathbb{R}^{n \times m}$$
Sequential Quadratic Programming

For \(i = n + 1, \ldots, n + m \), we have

\[
(\nabla \mathcal{L}(x, \lambda))_i = g_i(x)
\]

Differentiating \((\nabla \mathcal{L}(x, \lambda))_i\) wrt \(x_j\), for \(i = n + 1, \ldots, n + m \), \(j = 1, \ldots, n \), gives

\[
\frac{\partial}{\partial x_j} (\nabla \mathcal{L}(x, \lambda))_i = \frac{\partial g_i(x)}{\partial x_j}
\]

Hence the bottom-left \(m \times n\) block of the Jacobian of \(\nabla \mathcal{L}(x, \lambda)\) is

\[
J_g(x) \in \mathbb{R}^{m \times n}
\]

... and the final \(m \times m\) bottom right block is just zero (differentiation of \(g_i(x)\) w.r.t. \(\lambda_j\))
Hence, we have derived the following Jacobian matrix for \(\nabla \mathcal{L}(x, \lambda) \):

\[
\begin{bmatrix}
B(x, \lambda) & J_g^T(x) \\
J_g(x) & 0
\end{bmatrix} \in \mathbb{R}^{(m+n) \times (m+n)}
\]

Note the 2 \times 2 block structure of this matrix (matrices with this structure are often called KKT matrices\(^4\)).

\(^4\)Karush, Kuhn, Tucker: did seminal work on nonlinear optimization
Therefore, Newton’s method for $\nabla \mathcal{L}(x, \lambda) = 0$ is:

$$
\begin{bmatrix}
 B(x_k, \lambda_k) & J^T_g(x_k) \\
 J_g(x_k) & 0
\end{bmatrix}
\begin{bmatrix}
 s_k \\
 \delta_k
\end{bmatrix} = -
\begin{bmatrix}
 \nabla f(x_k) + J^T_g(x_k)\lambda_k \\
 g(x_k)
\end{bmatrix}
$$

for $k = 0, 1, 2, \ldots$

Here $(s_k, \delta_k) \in \mathbb{R}^{n+m}$ is the k^{th} Newton step
Sequential Quadratic Programming

Now, consider the constrained minimization problem, where \((x_k, \lambda_k)\) is our Newton iterate at step \(k\):

\[
\min_s \left\{ \frac{1}{2} s^T B(x_k, \lambda_k) s + s^T (\nabla f(x_k) + J_g^T(x_k) \lambda_k) \right\}
\]

subject to \(J_g(x_k) s + g(x_k) = 0 \)

The objective function is **quadratic in** \(s\) (here \(x_k, \lambda_k\) are constants)

This minimization problem has Lagrangian

\[
\mathcal{L}_k(s, \delta) \equiv \frac{1}{2} s^T B(x_k, \lambda_k) s + s^T (\nabla f(x_k) + J_g^T(x_k) \lambda_k) + \delta^T (J_g(x_k) s + g(x_k))
\]
Sequential Quadratic Programming

Then solving \(\nabla \mathcal{L}_k(s, \delta) = 0 \) (i.e. first-order necessary conditions) gives a linear system, which is the same as the \(k \)th Newton step.

Hence at each step of Newton’s method, we exactly solve a minimization problem (quadratic objective fn., linear constraints).

An optimization problem of this type is called a quadratic program.

This motivates the name for applying Newton’s method to \(\mathcal{L}(x, \lambda) = 0 \): Sequential Quadratic Programming (SQP).
Sequential Quadratic Programming

SQP is an important method, and there are many issues to be considered to obtain an efficient and reliable implementation:

- Efficient solution of the linear systems at each Newton iteration — matrix block structure can be exploited
- Quasi-Newton approximations to the Hessian (as in the unconstrained case)
- Trust region, line search etc to improve robustness
- Treatment of constraints (equality and inequality) during the iterative process
- Selection of good starting guess for λ
Another computational strategy for constrained optimization is to employ penalty methods.

This converts a constrained problem into an unconstrained problem.

Key idea: Introduce a new objective function which is a weighted sum of objective function and constraint.
Penalty Methods

Given the minimization problem

$$\min_x f(x) \quad \text{subject to} \quad g(x) = 0$$

we can consider the related unconstrained problem

$$\min_x \phi_\rho(x) = f(x) + \frac{1}{2} \rho g(x)^T g(x) \quad (**)$$

Let x^* and x^*_ρ denote the solution of (*) and (**) respectively.

Under appropriate conditions, it can be shown that

$$\lim_{\rho \to \infty} x^*_\rho = x^*$$
Penalty Methods

In practice, we can solve the unconstrained problem for a large value of ρ to get a good approximation of x^*

Another strategy is to solve for a sequence of penalty parameters, ρ_k, where $x^*_{\rho_k}$ serves as a starting guess for $x^*_{\rho_{k+1}}$

Note that the major drawback of penalty methods is that a large factor ρ will increase the condition number of the Hessian H_{ϕ_ρ}

On the other hand, penalty methods can be convenient, primarily due to their simplicity
Linear Programming
Linear Programming

As we mentioned earlier, the optimization problem

$$\min_{x \in \mathbb{R}^n} f(x) \text{ subject to } g(x) = 0 \text{ and } h(x) \leq 0,$$

with f, g, h affine, is called a linear program.

The feasible region is a convex polyhedron\(^5\)

Since the objective function maps out a hyperplane, its global minimum must occur at a vertex of the feasible region.

\(^5\)Polyhedron: a solid with flat sides, straight edges
Linear Programming

This can be seen most easily with a picture (in \mathbb{R}^2)
Linear Programming

The standard approach for solving linear programs is conceptually simple: examine a sequence of the vertices to find the minimum.

This is called the simplex method.

Despite its conceptual simplicity, it is non-trivial to develop an efficient implementation of this algorithm.

We will not discuss the implementation details of the simplex method...
In the worst case, the computational work required for the simplex method grows exponentially with the size of the problem.

But this worst-case behavior is extremely rare; in practice simplex is very efficient (computational work typically grows linearly).

Newer methods, called interior point methods, have been developed that are polynomial in the worst case.

Nevertheless, simplex is still the standard approach since it is more efficient than interior point for most problems.
Linear Programming

Python example: Using cvxopt, solve the linear program

$$\min_x f(x) = -5x_1 - 4x_2 - 6x_3$$

subject to

$$x_1 - x_2 + x_3 \leq 20$$
$$3x_1 + 2x_2 + 4x_3 \leq 42$$
$$3x_1 + 2x_2 \leq 30$$

and $0 \leq x_1, 0 \leq x_2, 0 \leq x_3$

(LP solvers are efficient, main challenge is to formulate an optimization problem as a linear program in the first place!)
PDE Constrained Optimization
PDE Constrained Optimization

We will now consider optimization based on a function that depends on the solution of a PDE

Let us denote a parameter dependent PDE as

\[\text{PDE}(u(p); p) = 0 \]

- \(p \in \mathbb{R}^n \) is a parameter vector; could encode, for example, the flow speed and direction in a convection–diffusion problem
- \(u(p) \) is the PDE solution for a given \(p \)
We then consider an output functional g, which maps an arbitrary function v to \mathbb{R}.

And we introduce a parameter dependent output, $G(p) \in \mathbb{R}$, where $G(p) \equiv g(u(p)) \in \mathbb{R}$, which we seek to minimize.

At the end of the day, this gives a standard optimization problem:

$$\min_{p \in \mathbb{R}^n} G(p)$$

6A functional is just a map from a vector space to \mathbb{R}.
One could equivalently write this PDE-based optimization problem as

$$\min_{p,u} g(u) \quad \text{subject to} \quad \text{PDE}(u; p) = 0$$

For this reason, this type of optimization problem is typically referred to as PDE constrained optimization.

- objective function g depends on u
- u and p are related by the PDE constraint

Based on this formulation, we could introduce Lagrange multipliers and proceed in the usual way for constrained optimization...
Here we will focus on the form we introduced first:

$$\min_{p \in \mathbb{R}^n} G(p)$$

Optimization methods usually need some derivative information, such as using finite differences to approximate $\nabla G(p)$.
PDE Constrained Optimization

But using finite differences can be expensive, especially if we have many parameters:

\[
\frac{\partial G(p)}{\partial p_i} \approx \frac{G(p + he_i) - G(p)}{h},
\]

hence we need \(n + 1\) evaluations of \(G\) to approximate \(\nabla G(p)\)!

We saw from the Himmelblau example that supplying the gradient \(\nabla G(p)\) cuts down on the number of function evaluations required.

The extra function calls due to F.D. isn’t a big deal for Himmelblau’s function, each evaluation is very cheap.

But in PDE constrained optimization, each \(p \rightarrow G(p)\) requires a full PDE solve!
Hence for PDE constrained optimization with many parameters, it is important to be able to compute the gradient more efficiently.

There are two main approaches:
- the direct method
- the adjoint method

The direct method is simpler, but the adjoint method is much more efficient if we have many parameters.
Consider the ODE BVP

\[-u''(x; p) + r(p)u(x; p) = f(x), \quad u(a) = u(b) = 0\]

which we will refer to as the **primal equation**

Here \(p \in \mathbb{R}^n \) is the parameter vector, and \(r : \mathbb{R}^n \to \mathbb{R} \)

We define an output functional based on an integral

\[g(v) \equiv \int_a^b \sigma(x)u(x)dx, \]

for some function \(\sigma \); then \(G(p) \equiv g(u(p)) \in \mathbb{R} \)
The Direct Method

We observe that

$$\frac{\partial G(p)}{\partial p_i} = \int_a^b \sigma(x) \frac{\partial u}{\partial p_i} \, dx$$

hence if we can compute \(\frac{\partial u}{\partial p_i} \), \(i = 1, 2, \ldots, n \), then we can obtain the gradient

Assuming sufficient smoothness, we can “differentiate the ODE BVP” wrt \(p_i \) to obtain,

$$- \frac{\partial u''}{\partial p_i} (x; p) + r(p) \frac{\partial u}{\partial p_i} (x; p) = - \frac{\partial r}{\partial p_i} u(x; p)$$

for \(i = 1, 2, \ldots, n \)
The Direct Method

Once we compute each $\frac{\partial u}{\partial p_i}$ we can then evaluate $\nabla G(p)$ by evaluating a sequence of n integrals.

However, this is not much better than using finite differences: We still need to solve n separate ODE BVPs.

(Though only the right-hand side changes, so could LU factorize the system matrix once and back/forward sub. for each i)
However, a more efficient approach when \(n \) is large is the adjoint method.

We introduce the adjoint equation:

\[
-z''(x; p) + r(p)z(x; p) = \sigma(x), \quad z(a) = z(b) = 0
\]
Adjoint-Based Method

Now,

\[
\frac{\partial G(p)}{\partial p_i} = \int_a^b \sigma(x) \frac{\partial u}{\partial p_i} \, dx
\]

\[
= \int_a^b \left[-z''(x; p) + r(p)z(x; p) \right] \frac{\partial u}{\partial p_i} \, dx
\]

\[
= \int_a^b z(x; p) \left[-\frac{\partial u''}{\partial p_i} (x; p) + r(p)\frac{\partial u}{\partial p_i}(x; p) \right] \, dx,
\]

where the last line follows by integrating by parts twice (boundary terms vanish because \(\frac{\partial u}{\partial p_i} \) and \(z \) are zero at \(a \) and \(b \))

(The adjoint equation is defined based on this “integration by parts” relationship to the primal equation)
Adjoint-Based Method

Also, recalling the derivative of the primal problem with respect to p_i:

$$-rac{\partial u''}{\partial p_i}(x; p) + r(p)\frac{\partial u}{\partial p_i}(x; p) = -\frac{\partial r}{\partial p_i}u(x; p),$$

we get

$$\frac{\partial G(p)}{\partial p_i} = -\frac{\partial r}{\partial p_i} \int_a^b z(x; p)u(x; p)dx$$

Therefore, we only need to solve two differential equations (primal and adjoint) to obtain $\nabla G(p)$!

For more complicated PDEs the adjoint formulation is more complicated but the basic ideas stay the same.