1. **Rosenbrock function.** A well known benchmark problem for optimization algorithms is minimization of Rosenbrock’s function

\[f(x, y) = 100(y - x^2)^2 + (1 - x)^2, \]

which has a global minimum of 0 at \((x, y) = (1, 1)\). We shall apply three different optimization algorithms for this function; in each case you should terminate the optimization algorithm when the absolute step size falls below \(10^{-8}\).

(a) Minimize Rosenbrock’s function using steepest descent. You should try the three starting points \([-1, 1]^T, [0, 1]^T, \) and \([2, 1]^T\), and report the number of iterations required for each starting point. Make a plot for each starting point that shows the contours of Rosenbrock’s function, as well as the optimization path that is followed. You may use a library function for the line search in steepest descent if you wish. Also, note that steepest descent may require a large number of iterations, so you should terminate the scheme when either the step size tolerance (indicated above) is satisfied, or once 2000 iterations have been performed.

(b) Repeat part (a), but with Newton’s method (without line search) instead of steepest descent.

(c) Repeat part (a), but with BFGS instead of steepest descent. In your implementation of BFGS, set \(B_0\) to the identity matrix.

2. **Shape determination.** Consider an inextensible jump rope of length \(R\) that is initially in a vertical \(xy\) plane, and hung between the points \((0, 0)\) and \((L, 0)\). Let the shape of the rope be described by

\[y(x) = \sum_{k=1}^{20} b_k \sin \frac{\pi k x}{L}. \]

The jump rope is rotated around the \(x\) axis with angular velocity \(\omega\). If \(\rho\) is the mass per unit unstretched length, its kinetic energy is

\[T = \int_0^L \rho y^2 \omega^2 \sqrt{1 + \left(\frac{dy}{dx}\right)^2} \, dx. \]

The length of the rope is given by

\[I = \int_0^L \sqrt{1 + \left(\frac{dy}{dx}\right)^2} \, dx. \]

Since the rope is inextensible, the equilibrium shape of the rope will maximize \(T\) subject to the constraint that \(I = R\).

Consider finding the equilibrium position using Lagrange multipliers. Let the vector of parameters be \(b = (b_1, b_2, \ldots, b_{19}, b_{20})\), and let the Lagrangian be \(\mathcal{L}(b, \lambda) = T + \lambda (I - R)\), where the integrals in Eqs. 3 and 4 are evaluated using a sufficiently accurate quadrature rule\(^1\) of your choice.

\(^1\)For example, you could use a composite trapezoid rule with 251 equally-spaced control points.
(a) Determine integral expressions for the components of $\nabla_b L$ and for $\partial L / \partial \lambda$.

(b) Using your answers from part (a), write a program to find stationary points of L. You may use a library function from Python, Matlab, or other software, although you will need to write the Lagrangian function and its gradient. Use the parameters $R = 3$, $\omega = L = \rho = 1$, and use an initial guess of $b_1 = 1.3$ with all other components being zero. On the same graph, plot the initial guess for $y(x)$ and the optimized solution for $y(x)$.

(c) Run your minimization algorithm starting from $b_2 = 0.7$ and all other components of b being zero. On the same graph, plot the initial guess for $y(x)$ and the optimized solution for $y(x)$.

(d) Optional. Find two friends and a rope. Ask the two friends to each hold one end of the rope, and spin it between them. From a position perpendicular to the spinning axis, take a photo of the rope, trying to catch it at the moment when it is in a vertical plane. By choosing parameters appropriately, superpose one of your calculated curves from on top of the photo, and check the level of agreement. In addition, see if the two friends can recreate the curve from (c).

(e) Optional. For your solutions from part (b) and (c), compute the eigenvalue spectrum of the Hessian of L when it is restricted to the feasible set.

3. Quantum eigenmodes. Consider the one-dimensional time-independent Schrödinger equation, which governs the behavior of a quantum particle in a potential well. In non-dimensionalized units where $\hbar^2 / 2m = 1$, the equation is

$$- \frac{\partial^2 \Psi}{\partial x^2} + v(x) \Psi(x) = E \Psi(x), \quad (5)$$

where $v : \mathbb{R} \to \mathbb{R}$ is a real-valued potential function, $\Psi : \mathbb{R} \to \mathbb{R}$ is the wavefunction, and $E \in \mathbb{R}$ is an eigenvalue which corresponds to the energy of the system. In general, the wavefunction is complex-valued, but for the time-independent case it is always possible to write it as a real-valued function.

The Schrödinger equation is posed on the infinite domain $(-\infty, \infty)$, and the wavefunction must satisfy $\Psi(x) \to 0$ as $x \to \pm \infty$ so that the norm of Ψ is bounded. In this question, we shall consider the finite interval $[-12, 12]$, which is large enough to impose zero Dirichlet boundary conditions at the boundaries, $\Psi(\pm 12) = 0$, without compromising the accuracy of the results.

As an example of a solution of Eq. 5, in Figure 1 we show the first five eigenvalues and eigenmodes on $x \in [-12, 12]$ for the Schrödinger solution in the case that $v(x) = x^2 / 10$.

(a) Compute the five lowest eigenvalues and corresponding eigenmodes for the potentials

i. $v_1(x) = |x|$,
ii. $v_2(x) = 12 \left(\frac{x}{10} \right)^4 - \frac{x^2}{2} + \frac{x}{8} + \frac{13}{10}$,
iii. $v_3(x) = 8 |||x| - 1| - 1|$.

You should use a second-order accurate finite-difference approximation of Schrödinger equation with $n = 1921$ grid points on the interval $[-12, 12]$, and then employ an
Figure 1: The five lowest eigenvalues, and the corresponding eigenmodes, for $v(x) = x^2/10$. To show the eigenmodes in a visually appealing way here we have plotted $y_i(x) = 3\Psi_i(x) + E_i$ for $i = 1, \ldots, 5$. Here, the energies listed are based on an analytical calculation by substituting in solutions of the form $\Psi(x) = p(x)e^{-\lambda x^2}$ into Eq. 5 where p is a polynomial.

eigensolve such as the Python/MATLAB eig/eigs routines. Impose zero boundary conditions at $x = \pm 12$ as described above. Present your results using a figure and a table in the same way as in Figure 1.

(b) Quantum mechanics tells us that if a particle has a wavefunction $\Psi(x)$, then the probability of finding it in a region $[a, b]$ is given by

$$\frac{\int_a^b |\Psi(x)|^2 dx}{\int_{-\infty}^{\infty} |\Psi(x)|^2 dx}.$$

(6)

For $[a, b] \subset [-12, 12]$ this can be approximated on the finite grid as

$$\frac{\int_a^b |\Psi(x)|^2 dx}{\int_{-12}^{12} |\Psi(x)|^2 dx}.$$

(7)

For each of the first five eigenmodes for the potential v_2, use the composite Simpson rule and Eq. 7 to compute the probability that the particle is in the region $x \in [0, 6]$ (i.e. specify five different probabilities, one corresponding to each eigenmode). When you use the composite Simpson rule here, you should use all grid points from (a) that are inside the interval of interest as quadrature points.

(c) Optional. Modify your program from part (a) to use fourth-order accurate finite differences, using the stencils described on the web, with suitable modifications at the end points.

4. Pollution scenarios near two factories. (Optional.) Suppose that there is a school near two industrial factories. In order to develop evacuation procedures for the school, we aim to
simulate what happens to pollution that is emitted by the factories. Suppose that plumes of pollution are released simultaneously by the two factories. The concentration of the pollution as a function of position and time, \(u(x, t) \), is then governed by the convection–diffusion partial differential equation

\[
\frac{\partial u(x, t)}{\partial t} + [W \cos(\theta), W \sin(\theta)] \cdot \nabla u(x, t) - 0.05 \Delta u(x, t) = 0,
\]

where \(\theta \) and \(W \) are the direction and strength of the wind, respectively. We will model the pollution inside the domain \(\Omega = [0, 1]^2 \), for the time interval \(t \in [0, t_f] \) where \(t_f = 0.25 \). The plumes of pollution at \(t = 0 \) are described by the initial condition,

\[
u(x, 0) = 2 \exp\left(-150[(x_1 - 0.25)^2 + (x_2 - 0.25)^2]\right)
+ \exp\left(-200[(x_1 - 0.65)^2 + (x_2 - 0.4)^2]\right),
\]

and the pollution is subject to zero Dirichlet boundary conditions,

\[
u(x, t) = 0, \quad x \in \partial \Omega,
\]

for all \(t \in [0, t_f] \).

(a) Write a program to solve the convection–diffusion equation using a finite difference method, with a backward Euler discretization in time, and second-order accurate central differences for the spatial derivatives. Throughout this question, use a uniform grid with 81 points in each spatial direction in \(\Omega \), and use a time-step \(\Delta t = 0.005 \). For the case when \(W = 1 \) and \(\theta = \pi/2 \), make contour plots of the pollution concentration profiles at \(t = 0, t = 0.125 \) and \(t = 0.25 \).

(b) Suppose that the school is at the position \(x_K = (0.5, 0.5) \). Let \(k(t; W, \theta) \equiv u(x_K, t; W, \theta) \) be the pollution level at the school as a function in time, and let \(K(W, \theta) \equiv \int_0^{t_f} k(t; W, \theta) dt \) be the total pollution that arrives at the school. From your solution in (a), plot your approximation to \(k(t; 1, \pi/2) \) for \(t \in [0, t_f] \), and use a composite trapezoid rule to determine \(K(1, \pi/2) \)

(c) Determine which wind parameters, \(W \) and \(\theta \), are maximize \(K(W, \theta) \) and are hence the most dangerous for the school.

Suppose that \(W \in [0, 3] \) and \(\theta \in [0, \pi] \). Use your finite difference approximation along with an optimization routine, using an initial guess of \((W_0, \theta_0) = (1, \pi/2)\), to find the most dangerous wind parameters, \(W^* \) and \(\theta^* \). What are \(W^* \) and \(\theta^* \), and what is the corresponding value for \(K(W^*, \theta^*) \)? Plot \(k(t; W^*, \theta^*) \) as a function of time.

(d) Now suppose that the wind speed is fixed to \(W = 0.5 \), but that the wind direction varies. Suppose that

\[
\theta(t) = \sum_{j=0}^{N} \lambda_j T_j \left(\frac{2t}{t_f} - 1 \right)
\]

where \(T_j \) is the \(j \)th Chebyshev polynomial, and \(\lambda = (\lambda_0, \lambda_1, \ldots, \lambda_N) \) is a vector of parameters. To begin, use \(N = 4 \). Use a starting guess of \(\lambda_0 = \pi/2 \) setting all other \(\lambda_k \) equal to zero. Report your value for the total pollution level, \(K(\lambda^*) \), and plot \(k(t; \lambda^*) \) as a function of time.

(e) Repeat part (d) and try increasing the value of \(N \) to examine how the optimal \(\theta(t) \) changes.