Applied Mathematics 205

Unit III: Numerical Calculus

Lecturer: Dr. David Knezevic
Unit III: Numerical Calculus

Chapter III.2: Numerical Integration and Differentiation
Numerical Integration
Suppose we want to evaluate the integral \(I(f) \equiv \int_a^b f(x)dx \)

We can proceed as follows:

1. Approximate \(f \) using a polynomial interpolant \(p_n \)
2. Evaluate \(Q_n(f) \equiv \int_a^b p_n(x)dx \), since we know how to integrate polynomials

\(Q_n(f) \) provides a quadrature formula, and we should have \(Q_n(f) \approx I(f) \)

A quadrature rule based on an interpolant \(p_n \) at \(n + 1 \) equally spaced points in \([a, b]\) is known as Newton-Cotes formula of order \(n \)
Newton-Cotes Quadrature

Let \(x_k = a + kh, k = 0, 1, \ldots, n \), where \(h = (b - a)/n \)

We write the interpolant of \(f \) in Lagrange form as

\[
p_n(x) = \sum_{k=0}^{n} f(x_k) L_k(x), \quad \text{where} \quad L_k(x) \equiv \prod_{i=0, i\neq k}^{n} \frac{x - x_i}{x_k - x_i}
\]

Then

\[
Q_n(f) = \int_{a}^{b} p_n(x) \, dx = \sum_{k=0}^{n} f(x_k) \int_{a}^{b} L_k(x) \, dx = \sum_{k=0}^{n} w_k f(x_k)
\]

where \(w_k \equiv \int_{a}^{b} L_k(x) \, dx \in \mathbb{R} \) is the \(k^{th} \) quadrature weight.
Newton-Cotes Quadrature

Note that quadrature weights do not depend on f, hence can be precomputed and stored

$n = 1 \implies$ Trapezoid rule (See lecture)

\[
Q_2(f) = \frac{b-a}{6} \left[f(a) + 4f\left(\frac{a+b}{2}\right) + f(b) \right] \quad \text{Simpson rule}
\]

We can also develop higher-order Newton-Cotes formulae in the same way
Error Estimates

Let \(E_n(f) \equiv I(f) - Q_n(f) \)

Then

\[
E_n(f) = \int_a^b f(x)dx - \sum_{k=0}^n w_k f(x_k)
\]

\[
= \int_a^b f(x)dx - \sum_{k=0}^n \left(\int_a^b L_k(x)dx \right) f(x_k)
\]

\[
= \int_a^b f(x)dx - \int_a^b \left(\sum_{k=0}^n L_k(x)f(x_k) \right) dx
\]

\[
= \int_a^b f(x)dx - \int_a^b p_n(x)dx
\]

\[
= \int_a^b (f(x) - p_n(x)) dx
\]

And we have an expression for \(f(x) - p_n(x) \)
Recall from I.2

\[f(x) - p_n(x) = \frac{f^{n+1}(\theta)}{(n+1)!}(x - x_0)\ldots(x - x_n) \]

Hence, it follows from \(|E_n(f)| \leq \int_a^b |f(x) - p_n(x)| \, dx\) that:

\[|E_n(f)| \leq \frac{M_{n+1}}{(n+1)!} \int_a^b |(x - x_0)(x - x_1)\ldots(x - x_n)| \, dx \]

where \(M_{n+1} = \max_{\theta \in [a,b]} |f^{n+1}(\theta)|\)
Error Estimates

See lecture: Trapezoid rule error bound

$$|E_1(f)| \leq \frac{(b - a)^3}{12} M_2$$

The bound for E_n depends directly on the integrand f (via M_{n+1})

Just like in Unit I with the Lebesgue constant, it is informative to be able to compare quadrature rules independently of the integrand.
Theorem: If Q_n integrates polynomials of degree n exactly, then
$\exists C_n > 0$ such that $|E_n(f)| \leq C_n \min_{p \in \mathbb{P}_n} \|f - p\|_\infty$

Proof: For $p \in \mathbb{P}_n$, we have

$$
|I(f) - Q_n(f)| \leq |I(f) - I(p)| + |I(p) - Q_n(f)|
= |I(f - p)| + |Q_n(f - p)|
\leq \int_a^b \|f - p\|_\infty + \left(\sum_{k=0}^n |w_k|\right) \|f - p\|_\infty
\equiv C_n \|f - p\|_\infty
$$

where

$$C_n \equiv b - a + \sum_{k=0}^n |w_k|$$
Error Estimates

Hence a convenient way to compare accuracy of quadrature rules is to compare the polynomial degree they integrate exactly.

Newton-Cotes of order n is based on polynomial interpolation, hence in general integrates polynomials of degree n exactly1

1Also follows from the M_{n+1} term in the error bound
Runge’s Phenomenon Again...

But Newton-Cotes formulae are based on interpolation at equally spaced points.

Hence they’re susceptible to Runge’s phenomenon, and we expect them to be inaccurate for large n.

Question: How does this show up in our bound

$$|E_n(f)| \leq C_n \min_{p \in \mathbb{P}_n} \|f - p\|_\infty$$
Runge Phenomenon Again…

Answer: In the constant C_n

Recall that $C_n \equiv b - a + \sum_{k=0}^{n} |w_k|$, and that $w_k \equiv \int_{a}^{b} L_k(x)dx$

If the L_k “blow up” due to equally spaced points, then C_n can also “blow up”
Runge Phenomenon Again...

In fact, we know that $\sum_{k=0}^{n} w_k = b - a$, why?

This tells us that if all the w_k are positive, then

$$C_n = b - a + \sum_{k=0}^{n} |w_k| = b - a + \sum_{k=0}^{n} w_k = 2(b - a)$$

Hence positive weights $\implies C_n$ is a constant, independent of n and hence $Q_n(f) \to l(f)$ as $n \to \infty$
Runge Phenomenon Again...

But with Newton-Cotes, quadrature weights become negative for $n > 8$ (e.g. in example above $L_{15}(x)$ would clearly yield $w_{15} < 0$)

Key point: Newton-Cotes is not useful for large n

However, there are two natural ways to get quadrature rules that converge as $n \to \infty$:

- Integrate piecewise polynomial interpolant
- Don’t use equally spaced interpolation points

We consider piecewise polynomial-based quadrature rules first
Integrating piecewise polynomial interpolant \Rightarrow composite quadrature rule

Suppose we divide $[a, b]$ into m subintervals, each of width $h = (b - a)/m$, and $x_i = a + ih$, $i = 0, 1, \ldots, m$

Then we have:

$$I(f) = \int_a^b f(x)dx = \sum_{i=1}^{m} \int_{x_{i-1}}^{x_i} f(x)dx$$
Composite Trapezoid Rule

Composite trapezoid rule: Apply trapezoid rule to each interval, i.e. \[\int_{x_{i-1}}^{x_i} f(x) \, dx \approx \frac{1}{2} h [f(x_{i-1}) + f(x_i)] \]

Hence,

\[
Q_{1,h}(f) \equiv \sum_{i=1}^{m} \frac{1}{2} h [f(x_{i-1}) + f(x_i)] \\
= h \left[\frac{1}{2} f(x_0) + f(x_1) + \cdots + f(x_{m-1}) + \frac{1}{2} f(x_m) \right]
\]
Composite Trapezoid Rule

Composite trapezoid rule error analysis:

\[E_{1,h}(f) \equiv I(f) - Q_{1,h}(f) \]

\[= \sum_{i=1}^{m} \left[\int_{x_{i-1}}^{x_i} f(x)dx - \frac{1}{2} h[f(x_{i-1}) + f(x_i)] \right] \]

Hence,

\[|E_{1,h}(f)| \leq \sum_{i=1}^{m} \left| \int_{x_{i-1}}^{x_i} f(x)dx - \frac{1}{2} h[f(x_{i-1}) + f(x_i)] \right| \]

\[\leq \frac{h^3}{12} \sum_{i=1}^{m} \max_{\theta \in [x_{i-1}, x_i]} |f''(\theta)| \]

\[\leq \frac{h^3}{12} m \| f'' \|_{\infty} \]

\[= \frac{h^2}{12} (b - a) \| f'' \|_{\infty} \]
We can obtain the composite Simpson rule in the same way.

Suppose that \([a, b]\) is divided into \(2m\) intervals by the points \(x_i = a + ih, \ i = 0, 1, \ldots, 2m, \ h = (b - a)/2m\).

Applying Simpson rule on each \([x_{2i-2}, x_{2i}]\), \(i = 1, \ldots, m\) yields\(^2\)

\[
Q_{2,h}(f) \equiv \frac{h}{3} [f(x_0) + 4f(x_1) + 2f(x_2) + 4f(x_3) + \cdots \\
+ 2f(x_{2m-2}) + 4f(x_{2m-1}) + f(x_{2m})]
\]

\(^2\)Here each interval is of width \(2h\)
Adaptive Quadrature

Composite quadrature rules are very flexible, e.g. we need not choose equally sized intervals

Intuitively, we should use smaller intervals where f varies rapidly, and larger intervals where f varies slowly

This can be achieved by adaptive quadrature:

1. Initialize to $m = 1$ (one interval)
2. On each interval, evaluate quadrature rule and estimate quadrature error
3. If error estimate $> TOL$ on interval i, subdivide to get two smaller intervals and return to step 2.

Question: How can we estimate the quadrature error on an interval?
Adaptive Quadrature

One straightforward way to estimate quadrature error on interval i is to compare to a “more refined” result for interval i

Let $I_i(f)$ and $Q^i_h(f)$ denote the exact integral and quadrature approx. on interval i, respectively

Let $\hat{Q}^i_h(f)$ denote a more refined quadrature approx. on interval i, e.g. obtained by subdividing interval i

Then for the error on interval i, we have:

$$|I_i(f) - Q^i_h(f)| \leq |I_i(f) - \hat{Q}^i_h(f)| + |\hat{Q}^i_h(f) - Q^i_h(f)|$$

Then, we suppose we can neglect $|I_i(f) - \hat{Q}^i_h(f)|$ so that we use $|\hat{Q}^i_h(f) - Q^i_h(f)|$ as a computable estimator for $|I_i(f) - Q^i_h(f)|$
Adaptive Quadrature

Matlab’s quad function implements an adaptive Simpson rule

```
>> help quad
QUAD    Numerically evaluate integral, adaptive Simpson quadrature. Q = QUAD(FUN,A,B) tries to approximate the integral of scalar-valued function FUN from A to B to within an error of 1.e-6 using recursive adaptive Simpson quadrature.
```

Next we consider the second approach to developing more accurate quadrature rules: unevenly spaced quadrature points
Gauss Quadrature

Recall that we can compare accuracy of quadrature rules based on the polynomial degree that is integrated exactly.

So far, we haven’t been very creative with our choice of quadrature points: Newton-Cotes \iff equally spaced.

More accurate quadrature rules can be derived by choosing the x_i to maximize poly. degree that is integrated exactly.

Resulting family of quadrature rules is called Gauss quadrature.
Gauss Quadrature

Intuitively, with \(n + 1 \) quadrature points and \(n + 1 \) quadrature weights we have \(2n + 2 \) parameters to choose.

Hence we might hope to exactly integrate polynomials with \(2n + 2 \) parameters, i.e. of degree \(2n + 1 \).

It can be shown that this is possible \(\implies \) Gauss quadrature (proof is outside the scope of AM205).

Gauss quadrature is again based on integrating a polynomial interpolant, but we choose a specific set of interpolation points:

3 Gauss quadrature points are roots of a Legendre polynomial\(^3\)

\(^3\)Adrien-Marie Legendre, 1752-1833, French mathematician
Gauss Quadrature

We will not discuss Legendre polynomials in detail...

Briefly, Legendre polynomials \(\{ P_0, P_1, \ldots, P_n \} \) form an orthogonal basis for \(\mathbb{P}_n \) in the “\(L_2 \) inner-product”

\[
\int_{-1}^{1} P_m(x)P_n(x) \, dx = \begin{cases}
\frac{2}{2n+1}, & m = n \\
0, & m \neq n
\end{cases}
\]
Gauss Quadrature

As with Chebyshev polys, Legendre polys satisfy a 3-term recurrence relation

\[
P_0(x) = 1 \\
P_1(x) = x \\
(n + 1)P_{n+1}(x) = (2n + 1)xP_n(x) - nP_{n-1}(x)
\]

The first six Legendre polynomials
Gauss Quadrature

Hence, can find the roots of $P_n(x)$ and derive the n-point Gauss quadrature rule by integrating the Lagrange interpolant

Gauss quadrature rules have been extensively tabulated for $x \in [-1, 1]$:

<table>
<thead>
<tr>
<th>Number of points</th>
<th>Quadrature points</th>
<th>Quadrature weights</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>$-1/\sqrt{3}, 1/\sqrt{3}$</td>
<td>1, 1</td>
</tr>
<tr>
<td>3</td>
<td>$-\sqrt{3/5}, 0, \sqrt{3/5}$</td>
<td>5/9, 8/9, 5/9</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Key point: Gauss quadrature weights are always positive, hence Gauss quadrature converges as $n \to \infty$
Gauss Quadrature Points

Points cluster toward ±1, prevents Runge’s phenomenon!
Gauss Quadrature

In Matlab, quadl performs adaptive, composite Lobatto quadrature

(Lobatto quadrature is closely related to Gauss quadrature, difference is that we ensure that -1 and 1 are quadrature points)

From help quadl:

“QUAD may be most efficient for low accuracies with nonsmooth integrands.

QUADL may be more efficient than QUAD at higher accuracies with smooth integrands.”

Take-away message: Gauss/Lobatto quadrature is usually more efficient for smooth integrands
Numerical Differentiation
Finite Difference Approximations

Given a function \(f : \mathbb{R} \to \mathbb{R} \)

We want to approximate derivatives of \(f \) via simple expressions involving samples of \(f \)

As we saw in Unit 0, convenient starting point is Taylor’s theorem:

\[
f(x + h) = f(x) + f'(x)h + \frac{f''(x)}{2}h^2 + \frac{f'''(x)}{6}h^3 + \cdots
\]
Finite Difference Approximations

Solving for $f'(x)$ we get the forward difference formula

$$f'(x) = \frac{f(x + h) - f(x)}{h} - \frac{f''(x)}{2}h + \cdots$$

$$\approx \frac{f(x + h) - f(x)}{h}$$

Here we neglected an $O(h)$ term
Similarly, we have the Taylor series

\[f(x - h) = f(x) - f'(x)h + \frac{f''(x)}{2} h^2 - \frac{f'''(x)}{6} h^3 + \ldots \]

which yields the backward difference formula

\[f'(x) \approx \frac{f(x) - f(x - h)}{h} \]

Again we neglected an \(O(h) \) term
Finite Difference Approximations

Subtracting Taylor expansion for \(f(x - h) \) from expansion for \(f(x + h) \) gives the centered difference formula

\[
 f'(x) = \frac{f(x + h) - f(x - h)}{2h} - \frac{f'''(x)}{6} h^2 + \cdots
\]

\[
 \approx \frac{f(x + h) - f(x - h)}{2h}
\]

In this case we neglected an \(O(h^2) \) term
Finite Difference Approximations

Adding Taylor expansion for \(f(x - h) \) and expansion for \(f(x + h) \) gives the centered difference formula for the second derivative

\[
f''(x) = \frac{f(x + h) - 2f(x) + f(x - h)}{h^2} - \frac{f^{(4)}(x)}{12} h^2 + \ldots
\]

\[
\approx \frac{f(x + h) - 2f(x) + f(x - h)}{h^2}
\]

Again we neglected an \(O(h^2) \) term
Finite Difference Stencils

Forward diff.

Backward diff.

Centered diff. 1st derivative

Centered diff. 2nd derivative
Finite Difference Approximations

We can use Taylor expansion to derive approximations with higher order accuracy, or for higher derivatives.

This involves developing F.D. formulae with “wider stencils,” i.e. based on samples at $x \pm 2h, x \pm 3h, \ldots$

An alternative approach that yields equivalent results is to differentiate the interpolant.
Finite Difference Approximations

Linear interpolant at \(\{(x_0, f(x_0)), (x_0 + h, f(x_0 + h))\} \) is

\[
p_1(x) = f(x_0) \frac{x_0 + h - x}{h} + f(x_0 + h) \frac{x - x_0}{h}
\]

Differentiating \(p_1 \) gives

\[
p'_1(x) = \frac{f(x_0 + h) - f(x_0)}{h},
\]

which is the forward difference formula
Similarly, quadratic interpolant, p_2, from interpolation points \{x_0, x_1, x_2\} yields the centered difference formula for f' at x_1:

- Differentiate $p_2(x)$ to get a linear polynomial, $p_2'(x)$
- Evaluate $p_2'(x_1)$ to get centered difference formula for f'

Also, $p_2''(x)$ gives the centered difference formula for f''

Note: Differentiating the interpolant can be a convenient way to derive high order F.D. formulae
So far we have talked about finite difference formulae to approximate $f'(x_i)$ at some specific point x_i.

Question: What if we want to approximate $f'(x)$ on an interval $x \in [a, b]$?

Answer: We need to simultaneously approximate $f'(x_i)$ for x_i, $i = 1, \ldots, n$.

Finite Difference Approximations
Differentiation Matrices

We need a map from the vector $F \equiv [f(x_1), f(x_2), \ldots, f(x_n)] \in \mathbb{R}^n$ to the vector of derivatives $F' \equiv [f'(x_1), f'(x_2), \ldots, f'(x_n)] \in \mathbb{R}^n$

Let \tilde{F}' denote our finite difference approximation to the vector of derivatives, i.e. $\tilde{F}' \approx F'$

Differentiation is a linear operator\(^4\), hence we expect the map from F to \tilde{F}' to be an $n \times n$ matrix

This is indeed the case, and this map is a differentiation matrix, D

\(^4\)Since $(\alpha f + \beta g)' = \alpha f' + \beta g'$
Differentiation Matrices

Row i of D corresponds to the finite difference formula for $f'(x_i)$, since then $D_{(i,:)} F \approx f'(x_i)$

e.g. for forward difference approx. of f', non-zero entries of row i are

$$D_{ii} = -\frac{1}{h}, \quad D_{i,i+1} = \frac{1}{h}$$

This is a **sparse matrix** with two non-zero diagonals
Differentiation Matrices

\begin{verbatim}
n=100; h = 1/(n-1);
e = 1/h*ones(n,1);
D = spdiags([-e,e],[0,1],n,n);
spy(D);
\end{verbatim}
Differentiation Matrices

But what about the last row?

\[D_{n,n+1} = \frac{1}{h} \text{ is ignored!} \]
Differentiation Matrices

We can use the backward difference formula (which has the same order of accuracy) for row \(n \) instead

\[
D_{n,n-1} = -\frac{1}{h}, \quad D_{nn} = \frac{1}{h}
\]